
University of Massachusetts : MUC-4 Test Results and Analysi s

W. Lehnert, C . Cardie, D. Fisher, J. McCarthy, E. Riloff, & S. Soderland

Department of Computer Science
University of Massachusett s

Amherst, MA 01003
lehnert@cs.umass.edu

INTRODUCTIO N

The UMass/MUC-4 system is based on a form of sentence analysis known as selective concept
extraction . This approach to language processing is distinguished by a minimal reliance on syntactic sentenc e
analysis, along with a minimal dictionary customized to operate in a limited domain . Last year, the UMass/MUC-3
system demonstrated the viability of selective concept extraction, but serious questions were raised about th e
portability and scalability of the technology, particularly with respect to the creation of domain-dependent and task-
dependent dictionaries . We estimated that 9 person/months went into the creation of the dictionary used by
UMass/MUC-3, and we were unable to say how much domain-dependent lexicon was still missing . We were
nevertheless sure that our dictionary coverage was incomplete .

This year we confronted the issue of efficient system development, with particular attention to the problem o f
dictionary construction . As a result, we are now in a position to claim that effective customized dictionaries can b e
constructed quickly and easily by relatively inexperienced system developers . The dictionary used by UMass/MUC- 3
emerged after roughly 1500 hours of highly skilled labor by two advanced graduate students and one post doc . For
MUC-4, we created a new dictionary that achieved nearly the full functionality of the UMass/MUC-3 dictionary after
only 8 hours of effort on the part of a first-year graduate student . This outcome was achieved through the use of an
automated dictionary construction tool called AutoSlog . The AutoSlog dictionary was used for our optional TST 3
and TST4 runs, while a modified version of our UMass/MUC-3 dictionary was used for our official TST3 and TST4
runs. Our optional and official systems were identically configured except for their dictionaries .

Our official UMass/MUC-4 system employs a new memory-based consolidation module for discours e
analysis, some generic enhancements to the CIRCUS sentence analyzer, and filters that operate after sentenc e
analysis and then again after consolidation in order to reduce spurious slot fills and spurious templates. We also made
a number of adjustments associated with MUC-4 template updates and domain specifications . We found it necessary
to eliminate last year's optional case-based consolidation module because of its strong tendency towar d
overgeneration . Even so, we had two competing consolidation modules to evaluate, as well as a variety of possibl e
filters . To resolve all of these other system options, we ran hundreds of tests over TST1, TST2 and 250 additiona l
texts from the development corpus.

OFFICIAL TESTING AND RESULTS

We ran four test sets for MUC-4 . Our official system was run on TST3 and TST4 as required, and we ran on e
additional optional system on TST3 and TST4 . The official system and optional system were identical except fo r
their dictionaries . The optional system ran a dictionary constructed by AutoSlog that contained 379 concept nod e
definitions. Our official system ran with a version of the UMass/MUC-3 dictionary augmented by 76 additiona l
concept node defmitions imported from the AutoSlog dictionary (for a total of 389 concept node definitions) . Both
dictionaries accessed the same 5436 lexical definitions for part-of-speech recognition (these definitions were taken
from the UMass/MUC-3 dictionary), along with 2102 proper names . We predicted that both systems would produc e
comparable levels of precision, and that the optional system would fall behind the official system by 10 recall point s
under All Templates . Table 1 contains the All Templates scores for all four test runs .

Our official and optional systems both crashed twice on TST3, once on a relevant text containing three key
templates and once again on an irrelevant text . No system crashes occurred during TST4 . We note that the official
system was run on all of DEV, TST1, and TST2 without any fatal errors shortly before the official testing began .

151

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1992 2. REPORT TYPE

3. DATES COVERED
 00-00-1992 to 00-00-1992

4. TITLE AND SUBTITLE
University of Massachusetts: MUC-4 Test Results and Analysis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Massachusetts,Center for Intelligent Information
Retrieval,Department of Computer Science,Amherst,MA,01003

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

As predicted, the AutoSlog dictionary produced lower recall levels than the official system : 7 points lower for TST3 ,
and 12 points lower for TST4. Precision was comparable for both systems with AutoSlog generating higher overall
precision rates : 2 points higher for TST3 and 1 point higher for TST4 . We note that our performance on TST4 wa s
generally worse than TST3. However, a close inspection of the detailed score reports for the official system show s
that the primary difference in those reports lies in the All Templates precision scores : 57 for TST3 vs. 45 for TST4 .
This loss of precision can be explained for the most part by comparing the number of spurious templates : 16 for
TST3 vs. 31 for TST4 .

System recall precision P&R 2P&R P&2R

Official TST3 47 57 51 .52 54 .67 48 .7 1
Optional TST3 40 59 47 .67 53 .88 42 .75
Official TST4 48 45 46.45 45.57 47 .3 7
Optional TST4 36 46 40.39 43 .58 37 .64

Table 1 : Overall Scores under All Templates for the Four UMass/MUC-4 Test Run s

Setting aside the differences between TST3 and TST4, we were pleased to see how well the AutoS lo g
dictionary performed relative to our hand-crafted dictionary from last year . Comparing P&R scores, our AutoSlog
dictionary achieved 93% of the overall performance of our official system on TST3, and 87% of the official system' s
performance on TST4. In an effort to leverage the UMass/MUC-3 and the AutoSlog dictionaries, we strengthened
the performance of the MUC-3 dictionary by augmenting it with 76 AutoSlog defrnitions . t Without this boost to
the MUC-3 dictionary, the distance between our official and optional systems would have been insignificant.

Given our MUC-4 test results, we have demonstrated that an effective domain-dependent dictionary can be
efficiently constructed using a representative text corpus accompanied by hand-coded template encodings. Our
preliminary and very limited efforts have produced a dictionary that closely mirrors the functionality obtained by a
relatively successful hand-crafted dictionary. Although the process of dictionary construction via AutoSlog is not
totally automated, the manual labor needed can be completed in a matter of hours by a single individual with
minimal expertise in dictionary construction . We consider this to be a significant step forward in the area o f
automated dictionary construction for text extraction applications .

AUTOMATED DICTIONARY CONSTRUCTIO N

The AutoSlog construction tool analyzes available key templates in conjunction with source texts and
generates hypothesized CIRCUS definitions without human assistance . AutoSlog's proposed concept node
definitions are derived from sentences in the MUC-4 development corpus that contain string fills associated with key
templates . Using the complete 1300-text DEV corpus as the training set for our dictionary construction experiment ,
AutoSlog proposed 1356 concept node definitions in response to 1272 string-fill slots. Although a large number of
these definitions were flawed or redundant, 28% of AutoS log's proposed definitions were reasonable and could be
included in an operational dictionary without alteration . In our experiment, 375 of the 1356 definitions proposed by
AutoSlog were deemed acceptable when reviewed by visual inspection .

Each AutoSlog definition begins with a single string fill in a single key template . Given a specific slot ,
AutoSlog extracts the first non-empty string fill listed in the key template (string-fill slots often contain multipl e
strings based on multiple references within the source text) . It then searches the source text for the first instance of
that exact string within the source text . Once located, AutoSlog pulls the complete sentence containing that strin g
from the source text and passes it to the CIRCUS sentence analyzer for syntactic analysis . CIRCUS analyzes th e
sentence using a part-of-speech dictionary . When all goes well, a set of buffers are instantiated with simple syntacti c
constituents corresponding to a subject, a verb, and possibly an object or a prepositional phrase . When the original
string fill shows up in one of these buffers, AutoSlog hypothesizes a concept node definition complete with a lexica l
trigger, complement pattern, and slot constraints . This definition is then written to a file and AutoSlog returns to th e
key template for the next siring fill slot . Figure 1 shows the AutoS log construction tool in action .

t Other methods of leveraging the two dictionaries were tested, but this was the most effective strategy .

152

Key Template

sentenc e

string fil l

5436 tagge d
words

1

*Do * _ (__)

*PP * _ (... (.. ..))

syntactic analysis

I".1	
sentence

Source Text

(((()

	

))

((

	

) (() () ())(())))

Concept Node Definition

Figure 1 : Automated Dictionary Constructio n

The presence of string-fills in key templates is a crucial requirement for AutoSlog . In fact, the more string-fil l
slots, the better. The MUC-4 templates contained six string-fill slots used by AutoSlog : inc-instr-id, perp-ind-id,
perp-org-id, phys-tgt-id, hum-tgt-name, and hum-tgt-desc . After processing the 1300 texts of DEV, AutoSlo g
generated 136 definitions based on inc-instr-id, 316 definitions from perp-ind-id, 201 definitions from perp-org-id ,
306 definitions from phys-tgt-id, 193 definitions from hum-tgt-name, and 204 definitions from hum-tgt-desc . Thi s
dictionary was compiled in 14 hours and then passed to a CIRCUS programmer for manual review. During the
review process, each definition was dispatched into one of two possible states : (1) keep as is, or (2) save for possible
revision . Files were maintained for the "keeps" and the "edits" with the expectation that the keep-definitions migh t
be augmented by some number of edit-definitions if any of the edit definitions could be salvaged . The initial
categorization into "keeps" and "edits" was relatively fast because each definition could be categorized on the basis of
visual inspection alone . Many definitions destined for the edit files were easy to spot since they often resulted fro m
parsing errors, patterns of no linguistic generality, or patterns of dubious reliability .

Here is an example a good AutoSlog definition generated by the first text in the development corpus :

Id: DEV-MUC3-0001

	

Trigger: KIDNAPPED

	

Trigger Root : KIDNAP

	

Syntactic-type: VERB
Slot filler : "TERRORISTS "
Sentence:(THE ARCE BATTALION COMMAND HAS REPORTED THAT ABOUT 6650 PEASANTS OF VARIOUS AGES HAVE

BEEN KIDNAPPED BY TERRORISTS OF THE FARABUNDO_MARTI_NATIONAL_LIBERATION_FRONT I N
SAN_MIGUEL DEPARTMENT >PE)

Name: %ACTOR-PASSIVE-VERB-PP-KIDNAPPED-BY%
Time limit : 10
Variable Slots :

	

Constraints :
(ACTOR (*PP* (IS-PREP? '(BY))))

	

(((CLASS ORGANIZATION *PP*)
(CLASS TERRORIST *PP*)
(CLASS PROPER-NAME *PP*)
(CLASS HUMAN *PP)))

Constant Slots : (TYPE PERPETRATOR)
Enabling Conditions : ((PASSIVE))

This definition extracts slot fillers from constructions of the form : "X is/was/(has/have been) kidnapped by Y . "
This particular definition will only pick up the conceptual actor Y . A separate definition is needed to pick up the
conceptual victim X. The following is an example of a bad AutoSlog definition :

153

Id: DEV-MUC3-0036

	

Trigger. WAS

	

Trigger Root : WAS Syntactic-type : VER B

Slot Filler: "MEMBER OF THE DEMOCRATIC SOCIALIST PARTY"

Sentence:(GILDA FLORES WAS AN ACTIVE MEMBER OF THE DEMOCRATIC SOCIALIST PARTY OF GUATEMALA >C O

WHOSE SECRETARY_GENERAL MARIO SOLORZANO REPORTED SALVADORAN PARAMILITARY GROUPS AR E
CARRYING_OUT ACTIONS IN THIS COUNTRY >PE)

Name: %VICTIM-ACTIVE-OBJECT-VERB-WAS%
Time Limit: 1 0

Variable Slots :

	

Constraints :
(VICTIM (*DO* 1))

	

(((CLASS HUMAN *DO*)
(CLASS PROPER-NAME *DO*)))

Constant Slots: (TYPE KIDNAPPING)
Enabling Conditions : ((ACTIVE :CHECK-DO-NO-ONE T))

As it stands, this definition hypothesizes that an active form of the verb "to be" predicts the victim of a
kidnapping. Although the source sentence does legitimately suggest that the verb "to be" can be used to link huma n
names with human descriptions, this proposed definition cannot be trusted to deliver a kidnapping victim .

When AutoSlog creates a new definition, it checks the existing set of previously proposed definitions to see i f
the current proposal duplicates an older one . AutoSlog does not produce multiple copies of the same definition . By
tracking the number of duplicates AutoSlog suppresses, we can see evidence that the dictionary is approaching a
saturation point. In particular, we note that after AutoSlog has processed 1200 texts, the next 100 texts generat e
only half as many definitions as the first 100 texts. Figure 2 shows the weakening frequency of new dictionar y
definitions as we move through the development corpus .

Although the AutoSlog dictionary definitions are derived from only six template slots, consolidation and
template-generation routines are capable of extracting the information needed to fill additional slots . When the
AutoSlog dictionary operates in conjunction with the full system, we can fill every template slot except phys-tgt-
nation, phys-tgt-effect, phys-tgt-total-num, and hum-tgt-total-num .

The 8-hour AutoSlog dictionary was completed only four weeks before the final testing for MUC-4 . Now tha t
we have seen how much impact AutoSlog can have on the process of dictionary construction, it makes sense to
pursue enhancements to AutoSlog in order to strengthen its baseline performance . As it stands, AutoSlog can be
moved to new domains with a minimal amount of software tuning . Adjustments must be made to handle a ne w
template design, but any templates that contain string-fills will serve to fuel dictionary construction .

VV

8o _

Original AutoSlog Defs60 ,

~-40

20 ~, I -

0 n

o U,I
IflhiuiU

n_U
0

40
..~20

0 nn..nu=,

y
0
C l

E 1
m
C)

1v
0
Z 1
0.
U
a) 1
C
O
U

aa,
z
0
a0

E
3
z

2 4

	

6 7

	

8 9 10 11 12 1 3
Blocks of 100 DEV Texts

Figure 2: Dictionary Saturation Under AutoSlo g

154

TST3 ERROR ANALYSIS

We have conducted a post hoc analysis of our system's performance on TST3 in order to better understand th e
various problems encountered on TST3. Most of this data describes the behavior of CIRCUS, its use of concept
node definitions, and the effects of memory-based consolidation . As detailed and useful as the score reports are, scor e
reports are not designed to tease apart the performance contributions of a sentence analyzer, discourse analyzer, o r
template generator. Subcomponents like these must be analyzed separately if we want to understand where to focu s
future development efforts.

Recall Limitations

The dictionary used by the official UMass/MUC-4 system contained 389 concept node definitions . Of these ,
172 (44%) were enabled2 to process TST3 . On average, each definition was enabled nearly 9 times for a total of 151 5
concept node enablements (—15 per text on average) . For TST3, CIRCUS extracted 943 string fills to fill variabl e
slots in enabled concept nodes. Because there are a lot of redundant concept node definitions, almost half of these
string fills were duplicates, leaving 520 unique string fills extracted by CIRCUS . According to our analysis, 214 of
these string fills were discarded during consolidation and 306 string fills made it into a response template .

Of the 520 non-redundant string-fills, 38% were correctly incorporated into a response template where the y
matched the string or strings listed in a key template . A full 34% were correctly discarded or merged by consolidation
(and therefore did not make it into a response template) . The sum of these instances accounts for 72% of the tota l
string fills - all handled correctly by consolidation. Of the remaining string fills, 21% appeared in response template s
as spurious slot fills, and 7% were incorrectly discarded . Of the 237 string fills that did legitimately correspond to
slot fills in key templates, consolidation correctly incorporated 199 (84%) into response templates . Even so, our
overall recall score was only 46% . Where are the other string fills ?

Our analysis shows that CIRCUS generated 225 good (full match) string fills and 12 partially good (partia l
match) string fills . According to the score report, there were 416 possible string fills for TST3 . That tells us
CIRCUS is producing only 55% of the possible string fills for TST3 . This 55% hit rate effectively imposes a rough
ceiling on our overall recall, and suggests that significant gains in recall will require stronger performance level s
during sentence analysis .

PRECISION LIMITATIONS

When we examine the 306 string fills present in our TST3 response templates, we find that 187 could b e
matched to slot fills in some key template and 12 could be partially matched to a key template slot fill . If all of
these string fills were in correct slots and correct templates, our string fill precision would be 63% . But only 142
string fills result in full matches with key template slots and 24 result in partial matches . Of the 107 strings that
can ' t be matched to any key template, we have found the following breakdown of errors :

49 (46%) should have been discarded as irrelevan t
16 (15%) were from mis-fired concept node definition s
15 (14%) were from parser error s
14 (13%) should have been merged with a more specific strin g
12 (11%) were from words not covered adequately by the dictionar y
1 (1%) was from a source string altered by preprocessin g

2 An enabled concept node is one that produces a case frame instantiation . All output generated by CIRCUS is based
on enabled concept nodes .

155

v

5

0
a small number of definitions account fo r

0

74% of all string fill s

5

0 -f't' fT18f1 A rrfT77 ,At r A A A,A . PA r, r, .,,

	

r,, A g ,, r rr, .,,

0 5 10 15 20 25 30 :35 40 45 50 55 60 65
total string fills per definitio n

Figure 3 : Concept Node Frequency Distributio n

Of the 49 false hits associated with relevancy discriminations, our single greatest precision error came fro m
30 false hits on military clashes. After that, four general problem areas were about equally responsible for a
significant number of errors : (1) false hits associated with faulty concept node definitions, (2) CIRCUS sentence
analysis errors, (3) consolidation merging failures, and (4) inadequate dictionary coverage .

Dictionary Coverage

Although inadequate dictionary coverage was identified as a source of visible precision loss, we have bee n
remarkably well-served by a relatively small dictionary of 5436 lexical items augmented by 2102 proper names . An
analysis of the TST3 lexicon shows that 1008 words appearing in TST3 were not recognized by our system . Of
these, 696 occurred only once . Of the remaining 312 words, the vast majority were proper names . A visua l
inspection of the unrecognized word list suggested that our lexicon was apparently adequate for the demands of TST3 .
However, this does not mean that all of our associated definitions were above reproach .

Although our dictionary contains a total of 389 concept node definitions, only 172 of these were used durin g
TST3 . A frequency analysis of these 172 definitions showed that 20% of the definitions generated 74% of the string
fills. A total of 37 (22%) concept node definitions failed to produce any string fills (perhaps these contain no variabl e
slots or maybe they were discarded during consolidation), while one concept node definition produced 65 string fills ,
and three others produced over 50 string fills (each) . Figure 3 shows the complete frequency distribution .

Comparing TST3 and TST4

Although our F-scores suggest dramatic differences between TST3 and TST4, there appears to be a singl e
factor that is responsible for these divergent score summaries . Table 2 shows a more detailed perspective on th e
differences and similarities between TST3 and TST4 .

Reviewing the scores in Table 5, we see that there is a remarkable similarity across most of the scores fo r
TST3 and TST4. TST4 was even better than TST3 under String Fills Only . The major differences appear in th e
precision and overgeneration scores for Matched/Spurious and All Templates . These differences also correspond to a
striking difference in the number of spurious templates generated for TST3 (16) and TST4 (31) . Looking deeper into
the problem, we determined that two factors seemed to contribute to the large number of spurious templates i n
TST4 .

-o

-a0c

m 2
U
C
o
0
a) 1
E
c

15 6

	 TST3	 	 TST4	
REC PRE OVG REC PRE OVG

MATCHED/MISSING 47 67 14 48 69 1 3
MATCHED/SPURIOUS 60 2 26 63 45 41
MATCHED/ONLY 60 67 14 63 69 1 3
ALL TEMPLATES 47 2. 26 48 45 41
SET FILLS ONLY 50 71 13 51 74 1 3
STRING FILLS ONLY 37 57 20 43 64 1 5

F-SCORES 51 .52 54 .67 48 .71 46 .45 45 .57 47.37

Table 2: TST3 and TST4 score reports from the official UMass/MUC-4 test run s

First, many legitimate templates were deemed spurious because of mapping problems . We can see some
evidence of this by running a comparative test designed to assess the impact of templates lost due to incorrec t
incident-type slot fills . In the comparative test, we will use "ATTACK" as the slot fill for all incident-type slots.
This will ensure that no template is deemed spurious because an incident-type is blocking it from being mapped to a
key template. Table 3 shows the resulting F scores from comparative test runs for both TST3 and TST4, runnin g
the official UMass/MUC-4 system and generating batch score reports throughout.

P R 2P&R P&2R

TST3 - official system 46 .47 49 .64 43 .6 8
TST3 - "all attacks" is on 45 .46 48 .63 42 .67

TST4 - official system 39 .44 38 .56 40 .36
TST4 - "all attacks" is on 40 .98 40 .38 41 .5 8

Table 3 : The Effect of Spurious Templates Lost to Incorrect Incident-Types

In comparing the net effect of the "all attacks" heuristic, we find that there is no advantage to any of the F -
scores when all templates are typed as attacks in TST3 . Indeed, there is a uniform drop of one point across the board
when "all attacks " is turned on . On the other hand, the F scores for TST4 all benefit from the "all attacks" heuristic .
P&R goes up 1 .54, 2P&R goes up 1 .82, and P&2R goes up 1 .22. This tells us that we did not tend to lose
otherwise legitimate templates because of their incident types in TST3, whereas a significant number of legitimat e
templates were lost for this reason in TST4 . Precision is most dramatically affected by these errors, but P&R may
have lost at least 2 points because of this problem (it is not possible to extrapolate from batch scores to interactive
scores with complete certainty) .

Second, a large number of spurious templates were created when military targets were not recognized to b e
military in nature . We have already seen how military clashes were the single greatest source of spurious string fill s
in TST3 . Even so, we generated only 3 spurious templates due to false hits on military targets in TST3 . In TST4
we generated 12 spurious templates for the same reason . If we assume that each spurious template contains 11 slo t
fills (a reasonable assumption when template filtering is in place), it follows that 132 spurious slot fills are comin g
from false hits on military targets in TST4 . Removing 132 spurious slot fills from the TST4 score report, th e
precision score under All Templates goes from 42 to 48, and the P&R score goes up about 3 points as a result .

RESOURCES, SPIN-OFFS, AND FUTURE RESEARC H

Our primary system development and testing took place on three Texas Instruments Explorer II workstation s
each configured with 8 megabytes of RAM. Two Texas Instrument MicroExplorers, each with 8 megabytes o f
RAM, were used for the development of the AutoSlog lexicon . All development was done in Common Lisp . The
system code and lexicons required 14 megabytes of storage on a Vax VMS fileserver, 8 of which comprised th e

15 7

AutoSlog development files . System output was stored on a Decstation running Ultrix, where the scoring program
was run . System testing required 250 megabytes of storage for response files and score reports . The two official test
sets, TST3 and TST4, each took about 75 minutes to process on an Explorer II, using the workstation's local dis k
for all file output .

The development of our UMass/MUC-4 system has continued off and on for two years now . Last year we
estimated that 2.25 person/years was invested in the UMass/MUC-3 system. This year we were able to build on that
investment, and focus our effort more effectively on the critical issues of portability and scalability . All told, we
estimate that one person/year of effort went into MUC-4 after MUC-3 : 30% on testing, maintenance, and data
analysis; 30% on CIRCUS enhancements and dictionaries ; 15% on memory-based consolidation ; 15% on MUC-4
updates and documentation ; 10% on training for new personnel .

In the period since MUC-3, a number of related research projects have been pursued that did not directl y
contribute to MUC-4, but which address basic research issues associated with CIRCUS and text extraction systems.
We have demonstrated that case-base reasoning and machine learning techniques can be successfully applied to the
disambiguation of relative pronouns [1, 2, 3] ; experiments have shown how CIRCUS can be used to support
relevancy feedback algorithms for text classification [5] ; and additional experiments have been conducted with a
stochastic database derived from the MUC-3 corpus [4] .

We expect to see similarly successful spin-offs from MUC-4 in the areas of automated dictionary construction
and automated system scale-up. We will continue to exploit the MUC-3 corpus in pursuing these new directions, and
we expect to gain additional experience with at least one new application domain as well .

ACKNOWLEDGEMENT S

This work was supported in part by the Defense Advance Research Projects Agency and monitored by Scienc e
Applications International Corporation under contract No. N666001-90-D-0192; DO#22 .

BIBLIOGRAPH Y

[1] Cardie, C. (1992a) "Corpus-Based Acquisition of Relative Pronoun Disambiguation Heuristics" to appear in
Proceedings of the 30th Annual Conference of the Association of Computational Linguisitcs. University of
Delaware, Newark DE.

[2] Cardie, C . (1992b) "Learning to Disambiguate Relative Pronouns" to appear in Proceedings of the Tenth
National Conference on Artificial Intelligence . San Jose, CA .

[3] Cardie, C. (1992c) "Using Cognitive Biases to Guide Feature Set Selection" to appear in Proceedings ,
Fourteenth Annual Conference of the Cognitive Science Society, University of Indiana, Bloomington, IA.

[4] Fisher, D. and Riloff, E. (1992) "Applying Statistical Methods to Small Corpora: Benefiting from a Limited
Domain" to appear in Probabilistic Approaches to Natural Language, a AAAI Fall Symposium . Cambridge,
MA .

[5] Riloff, E . and Lehnert, W . (1992) "Classifying Texts Using Relevancy Signatures" to appear in Proceedings of
the Tenth National Conference on Artificial Intelligence . San Jose, CA .

158

